Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Struct Biol X ; 9: 100099, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38487378

RESUMO

Trichomonas vaginalis is the etiologic agent of trichomoniasis, the most common nonviral sexually transmitted infection worldwide, with an estimated 260 million new cases annually. T. vaginalis contains organelles common to all eukaryotic cells, uncommon cell structures such as hydrogenosomes, and a complex and elaborate cytoskeleton constituting the mastigont system. The mastigont system is mainly formed by several proteinaceous structures associated with basal bodies, the pelta-axostylar complex made of microtubules, and striated filaments named the costa and the parabasal filaments (PFs). Although the structural organization of trichomonad cytoskeletons has been analyzed using several techniques, observation using a new generation of scanning electron microscopes with a resolution exceeding 1 nm has allowed more detailed visualization of the three-dimensional organization of the mastigont system. In this study, we have investigated the cytoskeleton of T. vaginalis using a diverse range of scanning probe microscopy techniques, which were complemented by electron tomography and Fast-Fourier methods. This multi-modal approach has allowed us to characterize an unknown parabasal filament and reveal the ultrastructure of other striated fibers that have not been published before. Here, we show the differences in origin, striation pattern, size, localization, and additional details of the PFs, thus improving the knowledge of the cell biology of this parasite.

2.
J Struct Biol ; 216(1): 108064, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38280689

RESUMO

The inner structure of the flagella of Giardia intestinalis is similar to that of other organisms, consisting of nine pairs of outer microtubules and a central pair containing radial spokes. Although the 9+2 axonemal structure is conserved, it is not clear whether subregions, including the transition zone, are present in the flagella of this parasite. Giardia axonemes originate from basal bodies and have a lengthy cytosolic portion before becoming active flagella. The region of the emergence of the flagellum is not accompanied by any membrane specialization, as seen in other protozoa. Although Giardia is an intriguing model of study, few works focused on the ultrastructural analysis of the flagella of this parasite. Here, we analyzed the externalization region of the G. intestinalis flagella using ultra-high resolution scanning microscopy (with electrons and ions), atomic force microscopy in liquid medium, freeze fracture, and electron tomography. Our data show that this region possesses a distinctive morphological feature - it extends outward and takes on a ring-like shape. When the plasma membrane is removed, a structure surrounding the axoneme becomes visible in this region. This new extra-axonemal structure is observed in all pairs of flagella of trophozoites and remains attached to the axoneme even when the interconnections between the axonemal microtubules are disrupted. High-resolution scanning electron microscopy provided insights into the arrangement of this structure, contributing to the characterization of the externalization region of the flagella of this parasite.


Assuntos
Axonema , Giardia lamblia , Giardia lamblia/ultraestrutura , Microtúbulos/metabolismo , Flagelos/metabolismo , Microscopia Eletrônica de Varredura
3.
Pathogens ; 12(12)2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38133266

RESUMO

Trichomonas vaginalis is an extracellular protozoan parasite that causes human trichomoniasis, a sexually transmitted infection (STI) that affects approximately 270 million people worldwide. The phenomenon of T. vaginalis adhesion to inert substrates has been described in several reports. Still, very few studies on cluster formation have been conducted, and more detailed analyses of the contact regions between the parasites' membranes in these aggregate formations have not been carried out. The present study aims to show that T. vaginalis forms a tight monolayer, similar to an epithelium, with parasites firmly adhered to the culture flask bottom by interdigitations and in the absence of host cells. In addition, we analyzed and compared the formation of the clusters, focusing on parasite aggregates that float in the culture flasks. We employed various imaging techniques, including high-resolution scanning electron microscopy, transmission electron microscopy, cytochemistry, TEM tomography, and dye injection. We analyzed whether the monolayer behaves as an epithelium, analyzing cell junctions, cell communication, and ultrastructural aspects, and concluded that monolayer formation differs from cluster formation in many aspects. The monolayers form strong adhesion, whereas the clusters have fragile attachments. We did not find fusion or the passage of molecules between neighbor-attached cells; there is no need for different strains to form filopodia, cytonemes, and extracellular vesicles during cluster and monolayer formation.

4.
J Appl Biomater Funct Mater ; 14(4): e423-e430, 2016 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-27647388

RESUMO

BACKGROUND: Driven by the potential biological applications of graphene, many groups have studied the response of cells exposed to graphene oxide (GO). In particular, investigations of bacteria indicate that there are 2 crucial parameters, which so far have only been investigated separately: GO size and exposure methodology. Our study took into account both parameters. We carefully characterized the samples to catalog sizes and structural properties, and tested different exposure methodologies: exposure in saline solution and in the presence of growth media. Furthermore, we performed experiments with peripheral blood mononuclear cells exposed to our GO materials. METHODS: Atomic force microscopy, scanning electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy and transmission electron microscopy were used to characterize the morphology and composition of different samples of GO: GO-H2O, GO-PBS and GO-MG. Our samples had 2D sizes of ~100 nm (GO-H2O and GO-PBS) and >2 µm (GO-MG). We tested antibacterial activity and cytotoxicity toward peripheral blood mononuclear cells of 3 different GO samples. RESULTS: A size-dependent growth inhibition of Escherichia coli (DH5 α) in suspension was found, which proved that this effect depends strongly on the protocol followed for exposure. Hemocompatibility was confirmed by exposing peripheral blood mononuclear cells to materials for 24 hours; viability and apoptosis tests were also carried out. CONCLUSIONS: Our experiments provide vital information for future applications of GO in suspension. If its antibacterial properties are to be potentiated, care should be taken to select 2D sizes in the micrometer range, and exposure should not be carried out in the presence of grow media.


Assuntos
Escherichia coli/crescimento & desenvolvimento , Escherichia coli/ultraestrutura , Grafite/farmacologia , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/ultraestrutura , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Viabilidade Microbiana/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA